Human Activity Classification with Online Growing Neural Gas

نویسندگان

  • Maximilian Panzner
  • Oliver Beyer
  • Philipp Cimiano
چکیده

In this paper we present an online approach to human activity classification based on Online Growing Neural Gas (OGNG). In contrast to state-of-the-art approaches that perform training in an offline fashion, our approach is online in the sense that it circumvents the need to store any training examples, processing the data on the fly and in one pass. The approach is thus particularly suitable in life-long learning settings where never-ending streams of data arise. We propose an architecture that consists of two layers, allowing the storage of human actions in a more memory efficient structure. While the first layer (feature map) dynamically clusters Space-Time Interest Points (STIP) and serves as basis for the creation of histogram-based signatures of human actions, the second layer (class map) builds a classification model that relies on these human action signatures. We present experimental results on the KTH activity dataset showing that our approach has comparable performance to a Support Vector Machine (SVM) while performing online and avoiding to store examples explicitly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DYNG: Dynamic Online Growing Neural Gas for stream data classification

In this paper we introduce Dynamic Online Growing Neural Gas (DYNG), a novel online stream data classification approach based on Online Growing Neural Gas (OGNG). DYNG exploits labelled data during processing to adapt the network structure as well as the speed of growth of the network to the requirements of the classification task. It thus speeds up learning for new classes/labels and dampens g...

متن کامل

A Solution to the Problem of Extrapolation in Car Following Modeling Using an online fuzzy Neural Network

Car following process is time-varying in essence, due to the involvement of human actions. This paper develops an adaptive technique for car following modeling in a traffic flow. The proposed technique includes an online fuzzy neural network (OFNN) which is able to adapt its rule-consequent parameters to the time-varying processes. The proposed OFNN is first trained by an growing binary tree le...

متن کامل

Online Labelling Strategies for Growing Neural Gas

Growing neural gas (GNG) has been successfully applied to unsupervised learning problems. However, GNG-inspired approaches can also be applied to classification problems, provided they are extended with an appropriate labelling function. Most approaches along these lines have so far relied on strategies which label neurons a posteriori, after the training has been completed. As a consequence, s...

متن کامل

Effect of sound classification by neural networks in the recognition of human hearing

In this paper, we focus on two basic issues: (a) the classification of sound by neural networks based on frequency and sound intensity parameters (b) evaluating the health of different human ears as compared to of those a healthy person. Sound classification by a specific feed forward neural network with two inputs as frequency and sound intensity and two hidden layers is proposed. This process...

متن کامل

Online speaker diarization with a size-monitored growing neural gas algorithm

This paper proposes a method for segmenting and clustering an audio flow on the basis of speaker turns. This process, also known as speaker diarization, is of major importance in multimedia indexation. Here, we propose to realize this process online and without any prior knowledge on the number of speakers. This is done thanks to a statistical modelling of speakers based on a size-monitored gro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013